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An Interactive Activation Model of Context Effects in 
Letter Perception: Part 1. An Account of Basic Findings 

James L. McClelland and David E. Rumelhart 
University of California, San Diego 

A model of context effects in perception is applied to the perception of letters in 
various contexts. In the model, perception results from excitatory and inhibitory 
interactions of detectors for visual features, letters, and words. A visual input excites 
detectors for visual features in the display. These excite detectors for letters 
consistent with the active features. The letter detectors in turn excite detectors for 
consistent words. Active word detectors mutually inhibit each other and send feedback 
to the letter level, strengthening activation and hence perceptibility of their constituent 
letters. Computer simulation of the model exhibits the perceptual advantage for letters 
in words over unrelated contexts and is consistent with the basic fact about the word 
advantage. Most importantly, the model produces facilitation for letters in pronounceable 
pseudowords as well as words. Pseudowords activate detectors for words that are 
consistent with most of the active letters, and fed back from the activated words 
strengthens the activations of the letters in the pseudoword. The model thus accounts 
for apparently rule-governed performance without any actual rules. 

As we perceive, we are contin�ally ex­
tracting sensory information to g+ ide our 
attempts to determine what is before us. In 
addition, we bring to perception a wealth of 
knowledge about the objects we might see 
or hear and the larger units in which these 
objects co-occur. As one of us has argued for 
the case of reading (Rumelhart, 1977), our 
knowledge of the objects we might be per­
ceiving works together with the sensory in­
formation in the perceptual process. Exactly 
how does the knowledge that we have inter-
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act with the input? And how does this in­
teraction facilitate perception? 

In this two-part article we have attempted 
to take a few steps toward answering these 
questions. We consider one specific example 
of the interaction of knowledge and percep­
tion-the perception of letters in words and 
other contexts. In Part 1 we examine the 
main findings in the literature on perception 
of letters in context and develop a model 
called the interactive activation model to 
account for these effects. In Part 2 (Ru­
melhart & McClelland, in press) we extend 
the model in several ways. We present a set 
of studies introducing a new technique for 
studying the perception of letters in context, 
independently varying the duration and tim­
ing of the context and target letters. We 
show how the model fares in accounting for 
the results of these experiments and discuss 
how the model may be extended to account 
for a variety of phenomena. We also present 
an experiment that tests-and supports-a 
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counterintuitive prediction of the model. Fi­
nally, we consider how the mechanisms de­
veloped in the course of exploring our model 
of word perception might be extended to 
perception of other sorts of stimuli. 

Basic Findings on the Role of Context in 
Perception of Letters 

The notion that knowledge and familiarity 
play a role in perception has often been sup­
ported by experiments on the perception of 
letters in words (Bruner, 1957; Neisser, 
1967). It has been known for nearly l 00 
years that it is possible to identify letters in 
words more accurately than letters in ran­
dom letter sequences under tachistoscopic 
presentation conditions ( Cattell, 1886; see 
Huey, 1908, and Neisser, 1967, for reviews). 
However, until recently such effects were 
obtained using whole reports of all of the 
letters presented. These reports are subject 
to guessing biases, so that it was possible to 
imagine that familiarity did not determine 
how much was seen but only how much could 
be inferred from a fragmentary percept. In 
addition, for longer stimuli, full reports are 
subject to forgetting. We may see more let­
ters than we can actually report in the case 
of nonwords, but when the letters form a 
word, we may be able to retain as a single 
unit the item whose spelling may simply be 
read out from long-term memory. Thus, de­
spite strong arguments to the contrary by 
proponents of the view that familiar context 
really does influence perception, it has been 
possible until recently to imagine that the 
context in which a letter was presented in­
fluences only the accuracy of postperceptual 
processes and not the process of perception 
itself. 

The perceptual advantage of letters in 
words. The seminal experiment of Reicher 
(1969) suggests that context does actually 
influence perceptual processing. Reicher 
presented target letters in words, unpro­
nounceable nonwords, and alone, following 
the presentation of the target display with 
a presentation of a patterned mask. The sub­
ject was then tested on a single letter in the 
display, using a forced choice between two 
alternative letters. Both alternatives fit the 
context to form an item of the type pre-

sented, so that, for example in the case of 
a word presentation, the alternative would 
also form a word in the context. 

Forced-choice performance was more ac­
curate for letters in words than for letters 
in nonwords or even for single letters. Since 
both alternatives made a word with the con­
text, it is not possible to argue that the effect 
is due to postperceptual guessing based on 
equivalent information extracted about the 
target letter in the different conditions. It 
appears that subjects actually come away 
with more information relevant to a choice 
between the alternatives when the target let­
ter is a part of a word. And, since one of the 
control conditions was a single letter, it is 
not reasonable to argue that the effect is due 
to forgetting letters that have been per­
ceived. It is hard to see how a single letter, 
once perceived, could be subject to a greater 
forgetting than a letter in a word. 

Reicher's (1969) finding seems to suggest 
that perception of a letter can be facilitated 
by presenting it in the context of a word. It 
appears, then, that our knowledge about 
words can influence the process of percep­
tion. Our model presents a way of bringing 
such knowledge to bear. The basic idea is 
that the presentation of a string of letters 
begins the process of activating detectors for 
letters that are consistent with the visual in­
put. As these activations grow stronger, they 
begin to activate detectors for words that are 
consistent with the letters, if there are any. 
The active word detectors then produce feed­
back, which reinforces the activations of the 
detectors for the letters in the word. Letters 
in words are more perceptible, because they 
receive more activation than representations 
of either single letters or letters in an un­
related context. 

Reicher's basic finding has been investi­
gated and extended in a large number of 
studies, and there now appears to be a set 
of important related findings that must also 
be explained. 

Irrelevance of word shape. The effect 
seems to be independent of the familiarity 
of the word as a visual configuration. The 
word advantage over nonwords is obtained 
for words in lowercase type, words in up­
percase type, or words in a mixture of upper-
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and lowercase (Adams, 1979; McClelland, 
1976). 

Role of patterned masking. The word 
advantage over single letters and nonwords 
appears to depend upon the visual masking 
conditions used (Johnston & McClelland, 
1973; Massaro & Klitzke, 1979; see also 
Juola, Leavitt, & Choe, 1974; Taylor & 
Chabot, 1978). The word advantage is quite 
large when the target appears in a distinct, 
high-contrast display followed by a pat­
terned mask of similar characteristics. How­
ever, the word advantage over single letters 
is actually reversed, and the word advantage 
over nonwords becomes quite small when the 
target is indistinct, low in contrast, and/or 
followed by a blank, nonpatterned field. 

Extension to pronounceable pseudo­
words. The word advantage also applies to 
pronounceable nonwords, such as REET or 
MAVE. A large number of studies (e.g., 
Aderman & Smith, 1971; Baron & Thur­
ston, 1973; Spoehr & Smith, 1975) have 
shown that letters in pronounceable non­
words (also called pseudowords) have a large 
advantage over letters in unpronounceable 
nonwords (also called unrelated letter 
strings), and three studies (Carr, Davidson, 
& Hawkins, 1978; Massaro & Klitzke, 
1979; McClelland & Johnston, 1977) have 
obtained an advantage for letters in pseu­
dowords over single letters. 

Absence of effects of contextual con­
straint under patterned-mask conditions. 
One important finding, which rules out sev­
eral of the models that have been proposed 
previously, is the finding that letters in 
highly constraining word contexts have little 
or no advantage over letters in weakly con­
straining word contexts under the distinct­
target / patterned-mask conditions that pro­
duce a large word advantage (Johnston, 
1978; see also Estes, 1975). For example, if 
the set of possible stimuli contains only 
words, the context _HIP constrains the first 
letter to be either an S, a C, or a W; whereas 
the context JNK is compatible with 12 to 
14 letters ( the exact number depends on 
what counts as a word). We might expect 
that the former, more strongly constraining 
context would produce superior detection of 
a target letter. But in a very carefully con­
trolled and executed study, Johnston (1978) 

found no such effect. Although constraints 
do influence performance ·under other con­
ditions (e.g., Broadbent & Gregory, 1968), 
they do not appear to make a difference un­
der the distinct-target/patterned-mask con­
ditions of the Johnston study. 

To be successful, any model of word per­
ception must provide an account not only for 
Reicher's (1969) basic effect but for these 
related findings as well. Our model accounts 
for all of these effects. We begin by pre­
senting the model in abstract form. We then 
focus on the specific version of the model 
implemented in our simulation program and 
consider some of the details. Subsequently, 
we turn to detailed considerations of the 
findings we have discussed in this section. 

The Interactive Activation Model 

We approach the phenomena of word per­
ception with a number of basic assumptions 
that we want to incorporate into the model. 
First, we assume that perceptual processing 
takes place within a system in which there 
are several levels of processing, each con­
cerned with forming a representation of the 
input at a different level of abstraction. For 
visual word perception, we assume that there 
is a visual feature level, a letter level, and 
a word level, as well as higher levels of pro­
cessing that provide "top-down" input to the 
word level. 

Second, we assume that visual perception 
involves parallel processing. There are two 
different senses in which we view perception 
as parallel. We assume that visual percep­
tion is spatially parallel. That is, we assume 
that information covering a region in space 
at least large enough to contain a four-letter 
word is processed simultaneously. In addi­
tion, we assume that visual processing occurs 
at several levels at the same time. Thus, our 
model of word perception is spatially parallel 
(i.e., capable of processing several letters of 
a word at one time) and involves processes 
that operate simultaneously at several dif­
ferent levels. Thus, for example, processing 
at the letter level presumably occurs simul­
taneously with processing at the word level 
and with processing at the feature level. 

Third, we assume that perception is fun­
damentally an interactive process. That is, 
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HIGHER LEVEL INPUT 
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Figure 1. A sketch of some of the processing levels in­
volved in visual and auditory word perception, with in­
terconnections. 

we assume that "top-down" or "concep­
tually driven" processing works simulta­
neously and in conjunction with "bottom­
up" or "data driven" processing to provide 
a sort of multiplicity of constraints that 
jointly determine what we perceive. Thus, 
for example, we assume that knowledge 
about the words of the language interacts 
with the incoming featural information in 
codetermining the nature and time course 
of the perception of the letters in the word. 

Finally, we wish to implement these as­
sumptions by using a relatively simple 
method of interaction between sources of 
knowledge whose only "currency" is simple 
excitatory and inhibitory activations of a 
neural type. 

Figure 1 shows the general conception of 
the model. Perceptual processing is assumed 
to occur in a set of interacting levels, each 
communicating with several others. Com­
munication proceeds through a spreading 
activation mechanism in which activation at 
one level spreads to neighboring levels. The 
communication can consist of both excit-

atory and inhibitory messages. Excitatory 
messages increase the activation level of 
their recipients. Inhibitory messages de­
crease the activation level of their recipients. 
The arrrows in the diagram represent excit­
atory connections, and the circular ends of 
the connections represent inhibitory connec­
tions. The intralevel inhibitory loop repre­
sents a kind of lateral inhibition in which 
incompatible units at the same level com­
pete. For example, since a string of four let­
ters can be interpreted as at most one four­
letter word, the various possible words mu­
tually inhibit one another and in that way 
compete as possible interpretations of the 
string. 

It is clear that many levels are important 
in reading and perception in general, and the 
interactions among these levels are impor­
tant for many phenomena. However, a the­
oretical analysis of all of these interactions 
introduces an order of complexity that ob­
scures comprehension. For this reason, we 
have restricted the present analysis to an 
examination of the interaction between a 
single pair of levels, the word and letter lev­
els. We have found that we can account for 
the phenomena reviewed above by consid­
ering only the interactions between letter 
level and word level elements. Therefore, for 
the present we have elaborated the model 
only on these two levels, as illustrated in 
Figure 2. We have delayed consideration of 
the effects of higher level processes and pho­
nological processes, and we have ignored the 
reciprocity of activation that may occur be­
tween word and letter levels and any other 
levels of the system. We consider aspects of 
the fuller model including these influences 
in Part 2 (Rumelhart & McClelland, in 
press). 

Specific Assumptions 

Representation assumptions. For every 
relevant unit in the system we assume there 
is an entity called a node. We assume that 
there is a node for each word we know, and 
that there is a node for each letter in each 
letter position within a four-letter string. 

The nodes are organized into levels. There 
are word level nodes and letter level nodes. 
Each node has connections to a number of 
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VISUAL INPUT 

Figure 2. The simplified processing system. 

other nodes. The nodes to which a node con­
nects are called its neighbors. Each connec­
tion is two-way. There are two kinds of con­
nections: excitatory and inhibitory. If two 
nodes suggest each other's existence (in the 
way that the node for the word the suggests 
the node for an initial t and vice versa), then 
the connections are excitatory. If two nodes 
are inconsistent with one another (in the way 
that the node for the word the and the node 
for the word boy are inconsistent), then the 
relationship is inhibitory. Note that we iden-

tif y nodes according to the units they detect, 
printing them in italics; stimuli presented to 
the system are in uppercase letters. 

Connections may occur within levels or 
between adjacent levels. There are no con­
nections between nonadjacent levels. Con­
nections within the word level are mutually 
inhibitory, since only one word can occur at 
any one place at any one time. Connections 
between the word level and letter level may 
be either inhibitory or excitatory ( depending 
on whether the letter is a part of the word 
in the appropriate letter position). We call 
the set of nodes with excitatory connections 
to a given node its excitatory neighbors and 
the set of nodes with inhibitory connections 
to a given node its inhibitory neighbors. 

A subset of the neighbors of the letter t 
is illustrated in Figure 3. Again, excitatory 
connections are represented by the arrows 
ending with points, and inhibitory connec­
tions are represented by the arrows ending 
with dots. We emphasize that this is a small 
subset of the neighborhood of the initial t.

The picture of the whole neighborhood, in­
cluding all the connections among neighbors 
and their connections to their neighbors, is 
much too complicated to present in a two­
dimensional figure. 

Activation assumptions. There is asso­
ciated with each node a momentary activa­
tion value. This value is a real number, and 
for node i we will represent it by a;(t). Any 
node with a positive activation value is said 
to be active. In the absence of inputs from 
its neighbors, all nodes are assumed to decay 
back to an inactive state, that is, to an ac­
tivation value at or below zero. This resting 
level may differ from node to node and cor­
responds to a kind of a priori bias (Broad­
bent, 1967) determined by frequency of ac­
tivation of the node over the long term. Thus, 
for example, the nodes for high-frequency 
words have resting levels higher than those 
for low-frequency words. In any case, the 
resting level for node i is represented by r;. 
For units not at rest, decay back to the rest­
ing level occurs at some rate 0;. 

When the neighbors of a node are active, 
they influence the activation of the node by 
either excitation or inhibition, depending on 
their relation to the node. These excitatory 
and inhibitory influences combine by a sim-
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ple weighted average to yield a net input to 
the unit, which may be either excitatory 
(greater than zero) or inhibitory. In math­
ematical notation, if we let n;(t) represent 
the net input to the unit, we can write the 
equation for its value as 

n;(t) = L aueit) - L 'Y;kik(t), (1) 
J k 

where eit) is the activation of an active ex­
citatory neighbor of the node, each ih) is 
the activation of an active inhibitory neigh­
bor of the node, and a;1 and 'Y;k are associated 
weight constants. Inactive nodes have no in­
fluence on their neighbors. Only nodes in an 
active state have any effects, either excit­
atory or inhibitory. 

The net input to a node drives the acti­
vation of the node up or down, depending 
on whether it is positive or negative. The 
degree of the effect of the input on the node 
is modulated by the node's current activity 
level to keep the input to the node from driv­
ing it beyond some maximum and minimum 
values (Grossberg, 1978). When the net in­
put is excitatory, n;(t) > 0, the effect on the 
node, f;(t), is given by 

f;(t) = n;(t)(M - a;(t)), (2) 

where Mis the maximum activation level of 
the unit. The modulation has the desired 
effect, because as the activation of the unit 
approaches the maximum, the effect of the 
input is reduced to zero. M can be thought 

Figure 3. A few of the neighbors of the node for the letter T in the first position in a word, and their 
interconnections. 
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of as a basic scale factor of the model, and 
we have set its value to 1.0. 

In the case where the input is inhibitory, 
n;(t) .< 0, the effect of the input on the node 
is given by 

t;(t) = n;(t)(a;(t) - m), (3) 

where m is the minimum activation of the 
unit. 

The new value of the activation of a node 
at time t + At is equal to the value at time 
t, minus the decay, plus the influence of its 
neighbors at time t: 

a;(t + At) 

= a;(t) - 0;(a;(t) - r;) + t;(t). (4) 

Input assumptions. Upon presentation 
of a stimulus, a set of featural inputs is made 
available to the system. Each feature in the 
display will be detected with some proba­
bility p. For simplicity it is assumed that 
feature detection occurs, if it is to occur at 
all, immediately after onset of the stimulus. 
The probability that any given feature will 
be detected is assumed to vary with the vi­
sual quality of the display. Features that are 
detected begin sending activation to all letter 
nodes that contain that feature. All letter 
level nodes that do not contain the extracted 
feature are inhibited. 

It is assumed that features are binary and 
that we can extract either the presence or 
absence of a particular feature. So, for ex­
ample, when viewing the letter R we can 
extract, among other features, the presence 
of a diagonal line segment in the lower right 
corner and the absence of a horizontal line 
across the bottom. In this way the model 
honors the conceptual distinction between 
knowing that a feature is absent and not 
knowing whether a feature is present. 

Presentation of a new display following an 
old one results in the probabilistic extraction 
of the set of features present in the new dis­
play. These features, when extracted, re­
place the old ones in corresponding positions. 
Thus, the presentation of an E following the 
R described above would result in the re­
placement of the two features described 
above with their opposites. 

On making responses. One of the more 

problematic aspects of a model such as this 
one is a specification of how these relatively 
complex patterns of activity might be related 
to the content of percepts and the sorts of 
response probabilities we observe in experi­
ments. We assume that responses and per­
haps the contents of perceptual experience 
depend on the temporal integration of the 
pattern of activation over all of the nodes. 
The integration process is assumed to occur 
slowly enough that brief activations may 
come and go without necessarily becoming 
accessible for purposes of responding or en­
tering perceptual experience. However, as 
the activation lasts longer and longer, the 
probability that it will be reportable in­
creases. Specifically, we think of the inte­
gration process as taking a running average 
of the activation of the node over previous 
time: 

ii;(t) = Loo a;(x)e-(1-x)rdx. (5) 

In this equation, the variable x represents 
preceding time, varying between - oo and 
time t. The exponential portion of the expres­
sion weights the contribution of the activa­
tion of the node in previous time intervals: 
Essentially, its effect is to reduce the con­
tribution of prior activations as they recede 
further back in time. The parameter r rep­
resents the relative weighting given to old 
and new information and determines how 
quickly the output values change in response 
to changes in the activations of the under­
lying nodes. The larger the value of r, the 
more quickly the output values change. Re­
sponse strength, in the sense of Luce's choice 
model ( Luce, 19 59 ), is an exponential f unc­
tion of the running average activation: 

(6) 

The parameter µ determines how rapidly 
response strength grows with increases in 
activation. Following Luce's formulation, we 
assume that the probability of making a re­
sponse based on node i is given by 

S;(t) 
p(R;,t) = L sit) ' (7) 

j,L 

where L represents the set of nodes compet­
ing at the same level with node i. 
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Most of the experiments we will be con­
sidering test subjects' performance on one 
of the letters in a word or other type of dis­
play. In accounting for these results, we have 
adopted the assumption that responding is 
always based on the output of the letter level, 
rather than the output of the word level or 
some combination of the two. The forced 
choice is assumed to be based only on this 
letter-level information. The subject com­
pares the letter selected for the appropriate 
position against the forced-choice alterna­
tives. If the letter selected is one of the al­
ternatives, then that alternative is chosen in 
the forced choice. If it is not one of the al­
ternatives, then the model assumes that one 
of the alternatives would simply be chosen 
at random. 

One somewhat problematical issue in­
volves deciding when to read out the results 
of processing and select response letters for 
each letter position. When a target display 
is simply turned on and left on until the sub­
ject responds, and when there is no pressure 
to respond quickly, we assume that the sub­
ject simply waits until the output strengths 
have reached their asymptotic values. How­
ever, when a target display is presented 
briefly followed by a patterned mask, the 
activations produced by the target are tran­
sient, as we shall see. Under these conditions, 
we assume that the subject learns through 
experience in the practice phase of the ex­
periment to read out the results of processing 
at a time that allows the subject to optimize 
performance. For simplicity, we have as­
sumed that readout occurs in parallel for all 
four letter positions. 

The Operation of the Model 

Now, consider what happens when an in­
put reaches the system. Assume that at time 
t0 all prior inputs have had an opportunity 
to decay, so that the entire system is in its 
quiescent,state, and each node is at its rest­
ing level. The presentation of a stimulus ini­
tiates a process in which certain features are 
extracted and excitatory and inhibitory pres­
sures begin to act upon the letter-level nodes. 
The activation levels of certain letter nodes 
are pushed above their resting levels. Others 
receive predominantly inhibitory inputs and 

are pushed below their resting levels. These 
letter nodes, in turn, begin to send activation 
to those word-level nodes they are consistent 
with and inhibit those word nodes they are 
not consistent with. In addition, within a 
given letter position channel, the various let­
ter nodes attempt to suppress each other, 
with the strongest ones getting the upper 
hand. As word-level nodes become active, 
they in turn compete with one another and 
send feedback down to the letter-level nodes. 
If the input features were close to those for 
one particular set of letters and those letters 
were consistent with those forming a partic­
ular word, the positive feedback in the sys­
tem will work to rapidly converge on the 
appropriate set of letters and the appropriate 
word. If not, they will compete with each 
other, and perhaps no single set of letters or 
single word will get enough activation to 
dominate the others. In this case the various 
active units might strangle each other 
through mutual inhibition. 

At any point during processing, the results 
of perceptual processing may be read out 
from the patt~rn of activations at the letter 
level into a buffer, where they may be kept 
through rehearsal or used as the basis for 
overt reports. The accuracy of this process 
depends on a running average of the acti­
vations of the correct node and of other com­
peting nodes. 

Simulations 

Although the model 1s m essence quite 
simple, the interactions among the various 
nodes can become complex, so that the 
model is not susceptible to a simple intuitive 
or even mathematical analysis. Instead, we 
have relied on computer simulations to study 
the behavior of the model and to see if it is 
consistent with the empirical data. A de­
scription of the actual computer program is 
given in the Appendix. 

For purposes of these simulations, we have 
made a number of simplifying assumptions. 
These additional assumptions fall into three 
classes: (a) discrete rather than continuous 
time, (b) simplified feature analysis of the 
input font, and (c) a limited lexicon. 

The simulation operates in discrete time 
slices, or ticks, updating the activations of 
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all of the nodes in the system once each cycle 
on the basis of the values on the previous 
cycle. Obviously, this is simply a matter of 
computational convenience and not a fun­
damental assumption. We have endeavored 
to keep the time slices "thin" enough so that 
the model's behavior is continuous for all 
intents and purposes. 

Any simulation of the model involves 
making explicit assumptions about the ap­
propriate featural analysis of the input font. 
We have, for simplicity, chosen the font and 
featural analysis employed by Rumelhart 
(1970) and by Rumelhart and Siple (1974), 
illustrated in Figure 4. Although the exper­
iments we have simulated employed differ­
ent type fonts, we assume that the basic re­
sults do not depend on the particular font 
used. The simplicity of the present analysis 
recommends it for the simulations, though 
it obviously skirts several fundamental issues 
about the lower levels of processing. 

Finally, our simulations have been re­
stricted to four-letter words. We have 
equipped our program with knowledge of 
1,179 four-letter words occurring at least 
two times per million in the Kucera and 
Francis ( 1967) word count. Plurals, inflected 
forms, first names, proper names, acronyms, 
abbreviations, and occasional unfamiliar en­
tries arising from apparent sampling flukes 

Fl][]EF5HI 
JKLMNDPQR 
5TLJVWXYZ 

Ill 
Figure 4. The features used to construct the letters in 
the font assumed by the simulation program, and the 
letters themselves. (From "Process of Recognizing Ta­
chistoscopically Presented Words" by David E. Ru­
melhart and Patricia Siple, Psycho/ogicp/ ~eview, 1974, 
81, 99-118. Copyright 1974 by the American Psycho­
logical Association. Reprinted by permission.) 

Figure 5. A hypothetical set of features that might be 
extracted on a trial in an experiment on word perception. 

have been excluded. This sample appears to 
be sufficient to reflect the essential charac­
teristics of the language and to show how 
the statistical properties of the language can 
affect the process of perceiving letters in 
words. 

An Example 

Let us now consider a sample run of our 
simulation model. The parameter values em­
ployed in the example are those used to sim­
ulate all the experiments discussed in the 
remainder of Part 1. These values are de­
scribed in detail in the following section. For 
the purposes of this example, imagine that 
the word WORK has been presented to the 
subject and that the subject has extracted 
those features shown in Figure 5. In the first 
three letter positions, the features of the let­
ters W, 0, and R have been completely ex­
tracted. In the final position a set of features 
consistent with the letters Kand R have been 
extracted, with the features that would dis­
ambiguate the letter unavailable. We wish 
now to chart the activity of the system re­
sulting from this presentation. Figure 6 
shows the time course of the activations for 
selected nodes at the word and letter levels, 
respectively. 

At the word level, we have charted the 
activity levels of the nodes for the words 
work, word, wear, and weak. Note first that 
work is the only word in the lexicon consis­
tent with all the presented information. As 
a result, its activation level is the highest and 
reaches a value of .8 through the first 40 
time cycles. The word word is consistent with 
the bulk of the information presented and 
therefore first rises and later is pushed back 
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down below its resting level, as a result of 
competition with work. The words wear and 
weak are consistent with the only letter ac­
tive in the first letter position, and one of the 
two active in the fourth letter position. They 
are also inconsistent with the letters active 
in Positions 2 and 3. Thus, the activation 
they receive from the letter level is quite 

weak, and they are easily driven down well 
below zero, as a result of competition from 
the other word units. The activations of these 
units do not drop quite as low, of course, as 
the activation level of words such as gill, 
which contain nothing in common with the 
presented information. Although not shown 
in Figure 6, these words attain near-mini-

word activations 
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Figure 6. The time course of activations of selected nodes at the word and letter levels after extraction 
of the features shown in Figure 5. 
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mum activation levels of about -.20 and stay 
there as the stimulus stays on. Returning to 
wear and weak, we note that these words are 
equally consistent with the presented infor­
mation and thus drop together for about the 
first 9 time units. At this point, however, the 
word work has clearly taken the upper hand 
at the word level, and produces feedback 
that reinforces the activation of the final k 
and not the final r. As a result, the word 
weak receives more activation from the letter 
level than the word wear and begins to gain 
a slight advantage over wear. The strength­
ened k continues to feed activation into the 
word level and strengthen consistent words. 
The words that contain an R continue to 
receive activation from the r node also, but 
they receive stronger inhibition from the 
words consistent with a K and are therefore 
ultimately weakened, as illustrated in the 
lower panel of Figure 6. 

The strong feature-letter inhibition en­
sures that when a feature inconsistent with 
a particular letter is detected, that letter will 
receive relatively strong net bottom-up in­
hibition. Thus in our example, the infor­
mation extracted clearly disconfirms the pos­
sibility that the letter D has been presented 
in the fourth position, and thus the activation 
level of the d node decreases quickly to near 
its minimum value. However, the bottom-up 
information from the feature level supports 
either a K or an R in the fourth position. 
Thus, the activation of each of these nodes 
rises slowly. These activations, along with 
those for W, 0, and R, push the activation 
of work above zero, and it begins to feed 
back; by about Time Cycle 4, it is beginning 
to push the k above the r (because WORR 
is not a word). Note that this separation 
occurs just before the words weak and wear 
separate. It is the strengthening of k due to 
feedback from work that causes them to sep­
arate. 

Ultimately, the r reaches a level well be­
low that of k where it remains, and the k 
pushes toward a .8 activation level. As dis­
cussed below, the word-to-letter inhibition 
and the letter-to-letter inhibition have both 
been set to 0. Thus, k and r both co-exist at 
moderately high levels, the r fed only from 
the bottom up, and the k fed from both bot­
tom up and top down. 

Finally, consider the output values for the 

letter output values 
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Figure 7. Output values for the letters r, k, and d after 
presentation of the display shown in Figure 5. 

letter nodes r, k, and d. Figure 7 shows the 
output values for the simulation. The output 
value is the probability that if a response was 
selected at time t, the letter in question 
would be selected as the output or response 
from the system. As intended, these output 
values grow somewhat more slowly than the 
values of the letter activations themselves 
but eventually, as they reach and hold their 
asymptotic values, come to reflect the acti­
vations of the letter nodes. Since in the ab­
sence of masking subjects can afford to wait 
to read out a response until the output values 
have had a chance to stabilize, they would 
be highly likely to choose the letter K as the 
response. ., 

Although this example is not very general 
in that we assumed that only partial infor­
mation was available in the input for the 
fourth letter position, whereas full infor­
mation was available at the other letter po­
sitions, it does illustrate many of the impor­
tant characteristics of the model. It shows 
how ambiguous sensory information can be 
disambiguated by top-down processes. Here 
we have a very simple mechanism capable 
of applying knowledge of words in the per­
ception of their component letters. 

Parameter Selection 

Once the basic simulation model was con­
structed, we began a lengthy process of at­
tempting to simulate the results of several 
representative experiments in the literature. 

Inge
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Only two parameters of the model were al­
lowed to vary from experiment to experi­
ment: (a) the probability of feature extrac­
tion and (b) the timing of the presentation 
of the masking stimulus if one was used. 

The probability of feature extraction is 
assumed to depend on the visual character­
istics of the display. In most of the experi­
ments we will consider, a bright, high-con­
trast target was used. Such a target would 
produce perfect performance if not followed 
by a patterned mask. In these cases proba­
bility of feature extraction was fixed at 1.0 
and the timing of the target offset and coin­
cident mask onset typically was adjusted to 
achieve 75% correct performance over the 
different experimental conditions of interest. 
In simulating the results of these experi­
ments, we likewise varied the timing of the 
target offset/mask onset to achieve the right 
average correct performance from the model. 

In some experiments no patterned mask 
was used, and performance was kept below 
perfect levels by using a dim or otherwise 
degraded target display. In these cases the 
probability of feature extraction was set to 
a value less than 1.0, which produces about 
the right overall performance level. 

The process of exploring the behavior of 
the model amounted to an extended search 
for a set of values for all the other param­
eters that would permit the model to simu­
late, as closely as possible, the results of all 
of the experiments to be discussed later in 
Part 1, as well as those to be considered in 
Part 2 (Rumelhart & McClelland, in press). 
To constrain the search, we adopted various 
restrictive simplifications. First, we assumed 
that all nodes have the same maximum ac­
tivation value. In fact, the maximum was set 
to 1.0, and served to scale all activations 
within the model. The minimum activation 
value for all nodes was set at -.20, a value 
that permits rapid reactivation of strongly 
inhibited nodes. The decay rate of all nodes 
was set to the value of .07. This parameter 
effectively serves as a scale factor that de­
termines how quickly things are allowed to 
change in a single time slice. The .07 value 
was picked after some exploration, since it 
seemed to permit us to run our simulations 
with the minimum number of time slices per 
trial, at the same time as it minimized a kind 

• 

of reverberatory oscillation that sets in when 
things are allowed to change too much on 
any given time cycle. We also assigned the 
resting value of zero to all of the letter nodes. 
The resting value of nodes at the word level 
was set to a value between -.05 and 0, de­
pending on word frequency. 

We have assumed that the weight param­
eters, a;j and 'Y;j depend only on the pro­
cessing levels of nodes i and j and on no other 
characteristics of their identity. This means, 
among other things, that the excitatory con­
nections between all letter nodes and all of 
the relevant word nodes are equally strong, 
independent of the identity of the words. 
Thus, for example, the degree to which the 
node for an initial t excites the node for the 
word tock is exactly the same as the degree 
to which it excites the node for the word this, 
in spite of a substantial difference in fre­
quency of usage. To further simplify mat­
ters, the word-to-letter inhibition was also 
set to zero. This means that feedback from 
the word level can strengthen activations at 
the letter level but cannot weaken them. 

The output from the detector network has 
essentially two parameters. The value .05 
was used for the parameter r, which deter­
mines how quickly the output values change 
in response to changes in the activations of 
the underlying nodes. This value is small 
enough that the output values change rela­
tively slowly, so that transient activations 
can come and go without much effect on the 
output. The value 10 was given to the pa­
rameter µ, in Equation 6 above. The param­
eter is essentially a scale factor relating ac­
tivations in the model to response strengths 
in the Luce formulation. 

The values of the remaining parameters 
were fixed at the values given in Table 1. It 
is worth noting the differences between the 
feature-letter influences and the letter-word 
influences. The feature-letter inhibition is 
30 times as strong as the feature-letter ex­
citation. This means that all of the features 
detected must be compatible with a partic­
ular letter before that letter will receive net 
excitation (since there are only 14 possible 
features, there can only be a maximum of 
13 excitatory inputs whenever there is a sin­
gle inhibitory input). The main reason for 
choosing this value was to permit the pre-
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Table l 
Parameter Values Used in the Simulations 

Parameter 

Feature-letter excitation 
Feature-letter inhibition 

Letter-word excitation 
Letter-word inhibition 

Word-word inhibition 
Letter-letter inhibition 
Word-letter excitation 

Value 

.005 

.15 

.07 

.04 

.21 
0 

.30 

sentation of a mask to clear the previous 
pattern of activation. On the other hand, the 
letter-word inhibition is actually somewhat 
less than the letter-word excitation. When 
only one letter is active in each letter posi­
tion, this means that the letter level will pro­
duce net excitation of all words that share 
two or more letters with the target word. 
Because of these multiple activations, 
strong word-word inhibition is necessary to 
"sharpen" the response of the word level, as 
we will see. In contrast, no such inhibition 
is necessary at the letter level. For these rea­
sons, the letter-letter inhibition has been set 
to 0, whereas the word-word inhibition has 
been set to .21. 

Comments on Related Formulations 

Before turning to the application of the 
model to the experimental literature, some 
comments on the relationship of this model 
to other models extant in the literature is in 
order. We have tried to be synthetic. We 
have taken ideas from our own previous work 
and from the work of others in the literature. 
In what follows, we attempt to identify the 
sources of most of the assumptions of the 
model and to show in what ways our model 
differs from the models we have drawn on. 

First of all, we have adopted the approach 
of formulating the model in terms similar to 
the way in which such a process might ac­
tually be carried out in a neural or neural­
like system. We do not mean to imply that 
the nodes in our system are necessarily re­
lated to the behavior of individual neurons. 
We will, however, argue that we have kept 
the kinds of processing involved well within 
the bounds of capability for simple neural 

circuits. The approach of modeling infor­
mation processing in a neural-like system 
has recently been advocated by Szentagothai 
and Arbib (I 975) and is represented in many 
of the articles presented in the volume by 
Hinton and Anderson ( 1981) as well as 
many of the specific models mentioned 
below. 

One case in point is the work of Levin 
(1976). He proposed a parallel computa­
tional system capable of interactive process­
ing that employs only excitation and inhi­
bition as its currency. Although our model 
could not be implemented exactly in the for­
mat of their system ( called Proteus), it is 
clearly in the spirit of their model and could 
readily be implemented within a variant of 
the Proteus system. 

In a recent article McClelland (1979) has 
proposed a cascade model of perceptual pro­
cessing in which activations on each level of 
the system drive those at the next higher 
level. This model has the properties that par­
tial outputs are continuously available for 
processing and that every level of the system 
processes the input simultaneously. The 
present model certainly adopts these as­
sumptions. It also generalizes them, permit­
ting information to flow in both directions 
simultaneously. 

Hinton (Note 1) has developed a relax­
ation model for visual perception in which 
multiple constraints interact by means of in­
crementing and decrementing real num­
bered strengths associated with various in­
terpretations of a portion of the visual scene 
in an attempt to attain a maximally consis­
tent interpretation of the scene. Our model 
can be considered a relaxation system in 
which activation levels are manipulated to 
get an optimal interpretation of an input 
word. 

James Anderson and his colleagues (An­
derson, 1977; Anderson, Silverstein, Ritz, 
& Jones, 1977) and Kohonen and his col­
leagues (Kohonen, 1977) have developed a 
pattern recognition system which they call 
an associative memory system. Their system 
shares a number of commonalities with ours. 
One feature the models share is the scheme 
of adding and subtracting weighted excita­
tion values to generate output patterns that 
represent cleaned-up versions of the input 
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patterns. In particular, our au and "(;j cor­
respond to the matrix elements of the as­
sociative memory models. Our model differs 
in that it has multiple levels and employs a 
nonlinear cumulation function similar to one 
suggested by Grossberg (1978 ), as men­
tioned above. 

Our model also draws on earlier work in 
the area of word perception. There is, of 
course, a strong similarity between this 
model and the logogen model of Morton 
(1969). What we have implemented might 
be called a hierarchical, nonlinear, logogen 
model with feedback between levels and in­
hibitory interactions among logogens at the 
same level. We have also added dynamic 
assumptions that are lacking from the log­
ogen model. 

The notion that word perception takes 
place in a hierarchical information-process­
ing system has, of course, been advocated by 
several researchers interested in word per­
ception (Adams, 1979; Estes, 1975; Johnston 
& McClelland, 1980; LaBerge & Samuels, 
1974; McClelland, 1976). Our model differs 
from those proposed in many of these papers 
in that processing at different levels is ex­
plicitly assumed to take place in parallel. 
Many of the models are not terribly explicit 
on this topic, although the notion that partial 
information could be passed along from one 
level to the next so that processing could go 
on at the higher level while it was continuing 
at the lower level had been suggested by 
McClelland (1976). Our model also differs 
from all of these others, except that of Ad­
ams (I 979 }, in assuming that there is feed­
back from the word level to the letter level. 
The general formulation suggested by Ad­
ams (1979) is quite similar to our own, al­
though she postulates a different sort of 
mechanism for handling pseudowords (ex­
citatory connections among letter nodes) and 
does not present a detailed account. 

Our mechanism for accounting for the 
perceptual facilitation of pseudowords in­
volves, as we will see below, the integration 
of feedback from partial activation of a num­
ber of different words. The idea that pseu­
doword perception could be accounted for 
in this way was inspired by Glushko (1979 }, 
who suggested that partial activation and 
synthesis of word pronunciations could ac-

count for the process of constructing a pro­
nunciation for a novel pseudoword. 

The feature-extraction assumptions and 
the bottom-up portion of the word recog­
nition model are nearly the same as those 
employed by Rumelhart (1970, Note 2) and 
Rumelhart and Siple ( 1974 ). The interactive 
feedback portion of the model is clearly one 
of the class of models discussed by Rumel­
hart (1977) and could be considered a sim­
plified control structure for expressing the 
model proposed in that paper. 

Application of the Simulation Model to 
Several Basic Findings 

We are finally ready to see how well our 
model fares in accounting for the findings 
of several representative experiments in the 
literature. In discussing each account, we 
will try to explain not only how well the sim­
ulation works but why it behaves as it does. 
As we proceed through the discussion, we 
will have occasion to describe several inter­
esting synergistic properties of the model 
that we did not anticipate but discovered as 
we explored the behavior of the system. As 
mentioned previously, the actual parameters 
used in both the examples that we will dis­
cuss and in the simulation results we will 
report are those summarized in Table 1. We 
will consider the robustness of the model, 
and the effects of changes in these param­
eters, in the discussion section at the end of 
Part 1. 

The Word Advantage and the Effects of 
Visual Conditions 

As we noted previously, word perception 
has been studied under a variety of different 
visual conditions, and it is apparent that dif­
ferent conditions produce different results. 
The advantage of words over nonwords ap­
pears to be greatest under conditions in 
which a bright, high-contrast target is fol­
lowed by a patterned mask with similar char­
acteristics. The word advantage appears to 
be considerably less when the target presen­
tation is dimmer or otherwise degraded and 
is followed by a blank white field. 

Typical data demonstrating these points 
(from Johnston & McClelland, 1973) are 
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Table 2 
Effect of Display Conditions on Proportion of 
Correct Forced Choices in Word and Letter 
Perception (From Johnston & McClelland, 
1973) 

Display type 

Visual condition Word 

Bright target/patterned mask .80 
Dim target/blank mask .78 

Letter with 
number 

signs 

.65 

.73 

presented in Table 2. Forced-choice perfor­
mance on letters in words is compared to 
performance on letters embedded in a row 
of number signs ( e.g., READ vs. #E##). The 
number signs serve as a control for lateral 
facilitation or inhibition. This factor appears 
to be important under dim-target/blank­
mask conditions. 

Target durations were adjusted separately 
for each condition, so that it is only the pat­
tern of differences within display conditions 
that is meaningful. The data show that a 
15% word advantage was obtained in the 
bright-target/patterned-mask condition and 
only a 5% word advantage in the dim-target/ 
blank-mask condition. Massaro and Klitzke 
(1979) obtained about the same size effects. 
Various aspects of these results have also 
been corroborated in two other studies (Juola 
et al., 1974; Taylor & Chabot, 1978). 

To understand the difference between 
these two conditions it is important to note 
that in order to get about 75% correct per­
formance in the no-mask condition, the stim­
ulus must be highly degraded. Since there 
is no patterned mask, the iconic trace pre­
sumably persists considerably beyond the 
offset of the target. It is our assumption that 
the effect of the blank mask is simply to 
reduce the contrast of the icon by summating 
with it. Thus, the limit on performance is 
not so much the amount of time available 
in which to process the information as it is 
the quality of the information made avail­
able to the system. In contrast, when a pat­
terned mask is employed, the mask produces 
spurious inputs, which can interfere with the 
processing of the target. Thus, in the bright­
target/patterned-mask conditions, the pri-

mary limitation on performance is the 
amount of time that the information is avail­
able to the system in relatively legible form 
rather than the quality of the information 
presented. This distinction between the way 
in which blank masks and patterned masks 
interfere with performance has previously 
been made by a number of investigators, in­
cluding Rumelhart (1970) and Turvey 
(1973). We now consider each of these sorts 
of conditions in turn. 

Word perception under patterned-mask 
conditions. When a high-quality display is 
followed by a patterned mask, we assume 
that the bottleneck in performance does not 
come in the extraction of feature informa­
tion from the target display. Thus, in our 
simulation of these conditions, we assume 
that all of the features presented can be ex­
tracted on every trial. The limitation on per­
formance comes from the fact that the ac­
tivations produced by the target are subject 
to disruption and replacement by the mask 
before they can be translated into a per­
manent form suitable for overt report. This 
general idea was suggested by Johnston and 
McClelland (1973) and considered by a 
number of other investigators, including 
Carr et al. (1978), Massaro and Klitzke 
(1979 ), and others. On the basis of this idea, 
a number of possible reasons for the advan­
tage for letters in words have been suggested. 
One is that letters in words are for some 
reason translated more quickly into a non­
maskable form (Johnston & McClelland, 
1973; Massaro & Klitzke, 1979). Another 
is that words activate representations re­
moved from the direct effects of visual pat­
terned masking ( Carr et al., 1978; Johnston 
& McClelland, 1973, 1980; McClelland, 
1976). In the interactive activation model, 
the reason letters in words fare better than 
letters in nonwords is that they benefit from 
feedback that can drive them to higher ac­
tivation levels. As a result, the probability 
that the activated letter representation will 
be correctly encoded is increased. 

To understand in detail how this account 
works, consider the following example. Fig­
ure 8 shows the operation of our model for 
the letter E both in an unrelated (#) context 
and in the context of the word READ for 
a visual display of moderately high quality. 
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We assume that display conditions are suf­
ficient for complete feature extraction, so 
that only the letters actually contained in the 
target receive net excitatory input on the 
basis of feature information. After some 
number of cycles have gone by, the mask is 
presented with the same parameters as the 

target. The mask simply replaces the target 
display at the feature level, resulting in a 
completely new input to the letter level. This 
input, because it contains features incom­
patible with the letter shown in all four po­
sitions, immediately begins to drive down the 
activations at the letter level. After only a 
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Figure 8. Activation functions (top) and output values (bottom) for the letter E, in unrelated context 
and in the context of the word READ. 
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few more cycles, these activations drop be­
low resting level in both cases. Note that the 
correct letter was activated briefly, and no 
competing letter was activated. However, 
because of the sluggishness of the output 
process, these activations do not necessarily 
result in a high probability of correct report. 
As shown in the top half of Figure 8, the 
probability of correct report reaches a max­
imum after 16 cycles at a performance level 
far below the ceiling. 

When the letter is part of the word (in 
this case, READ), the activation of the let­
ters results in rapid activation of one or more 
words. These words, in turn, feed back to the 
letter level. This results in a higher net ac­
tivation level for the letter embedded in the 
word. 

Our simulation of the word advantage 
under patterned-mask conditions used the 
stimulus list that was used for simulating the 
blank-mask results. Since the internal work­
ings of the model are completely determin­
istic as long as probability of feature ex­
traction is 1.0, it was only necessary to run 
each item through the model once to obtain 
the expected probability that the critical let­
ter would be encoded correctly for each item 
under each variation of parameters tried. 

As described previously, we have assumed 
that readout of the results of processing oc­
curs in parallel.for all four letter positions 
and that the subject learns through practice 
to choose a time to read out in order to op­
timize performance. We have assumed that 
readout time may be set at a different point 
in different conditions, as long as they are 
blocked so that the subject knows in advance 
what type of material will be presented on 
each trial in the experiment. Thus, in sim­
ulating the Johnston and McClelland ( 1973) 
results, we allowed for different readout 
times for letters in words and letters in un­
related contexts, with the different times se­
lected on the basis of practice to optimize 
performance on each type of material. 

A final feature of the simulation is the 
duration of the target display. This was var­
ied to produce an average performance on 
both letters embedded in number signs and 
letters in words that was as close as possible 
to the aveFage performance on these two 
conditions in the 1973 experiment of John-

ston and McClelland. The value used for the 
run reported below was 1 S cycles. As in the 
Johnston and McClelland study, the mask 
followed the target immediately. 

The simulation replicated the experimen­
tal data shown in Table 2 quite closely. Ac­
curacy on the forced choice was 81 % correct 
for the letters embedded in words and 66% 
correct for letters in an unrelated (#) con­
text. 

It turns out that it is not necessary to allow 
for different readout times for different ma­
terial types. A repetition of the simulation 
produced a 15% word advantage when the 
same readout time was chosen for both single 
letters and letters in words, based on optimal 
performance averaged over the two material 
types. Thus, the model is consistent with the 
fact that the word advantage does not de­
pend on separating the different stimulus 
types into separate blocks (Massaro & 
Klitzke, 1979). 

Perception of letters in words under con­
ditions of degraded input. In conditions of 
degraded (but not abbreviated) input, the 
role of the word level is to selectively rein­
force possible letters that are consistent with 
the visual information extracted and that are 
also consistent with the words in the subject's 
vocabulary. Recall that the task requires the 
subject to choose between two letters, both 
of which ( on word trials) make a word with 
the rest of the context. There are two distinct 
cases to consider. Either the featural infor­
mation extracted from the to-be-probed let­
ter is sufficient to distinguish between the 
alternatives, or it is not. Whenever the fea­
tural information is consistent with both of 
the forced-choice alternatives, any feedback 
will selectively enhance both alternatives 
and will not permit the subject to distinguish 
between them. When the information ex­
tracted is inconsistent with one of the alter­
natives, the model produces a word advan­
tage. The reason is that we assume forced­
choice responses are based not on the feature 
information itself but on the subject's best 
guess about what letter was actually shown. 
Feedback from the word level increases the 
probability of correct choice in those cases 
where the subject extracts information that 
is inconsistent with the incorrect alternative 
but consistent with the correct alternative 
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and a number of others. Thus, feedback 
would have the effect of helping the subject 
select the actual letter shown from several 
possibilities consistent with the set of ex­
tracted features. Consider again, for exam­
ple, the case of the presentation of WORD 
discussed above. In this case, the subject 
extracted incomplete information about the 
final letter consistent with both R and K. 
Assume that the forced choice the subjett 
was to face on this trial was between a D 
and a K. The account supposes that the sub­
ject encodes a single letter for each letter 
position before facing the forced choice. 
Thus, if the features of the final letter had 
been extracted in the absence of any context, 
the subject would encode R or K equally 
often, since both are equally compatible with 
the features extracted. This would leave the 
subject with the correct response some of the 
time. But if R were chosen instead, the sub­
ject would enter the forced choice between 
D and K without knowing the correct answer 
directly. When the whole word display is 
shown, the feedback generated by the pro­
cessing of all of the letters greatly strength­
ens the K, increasing the probability that it 
will be chosen over the R and thus increasing 
the probability that the subject will proceed 
to the forced choice with the correct response 
in mind. 

Our interpretation of the small word ad­
vantage in blank-mask conditions is a spe­
cific version of the early accounts of the word 
advantage offered by Wheeler (1970) and 
Thompson and Massaro ( 1973) before it was 
known that the effect depends on masking. 
Johnston (1978) has argued that this type 
of account does not apply under patterned­
mask conditions. We are suggesting that it 
does apply to the small word advantage ob­
tained under blank-mask conditions like 
those of the Johnston and McClelland ( 1973) 
experiment. We will see below that the 
model offers a different account of perfor­
mance under patterned-mask conditions. 

We simulated our interpretation of the 
small word advantage obtained in blank­
mask conditions in the following way. A set 
of 40 pairs of four-letter words that differed 
by a single letter was prepared. The differing 
letters occurred in each position equally 
often. From these words corresponding con-

trol pairs were generated in which the crit­
ical letters from the word pairs were pre­
sented in nonletter contexts (#s). Because 
they were presented in nonletter contexts, we 
assumed that these letters did not engage the 
word processing system at all. 

Each member of each pair of items was 
presented to the model four times, yielding 
a total of 320 stimulus presentations of word 
stimuli and 320 presentations of single let­
ters. On each presentation, the simulation 
sampled a random subset of the possible fea­
tures to be detected by the system. The prob­
ability of detection of each feature was set 
at .45. As noted previously, these values are 
in a ratio of I to 30, so that if any one of 
the 14 features extracted is inconsistent with 
a particular letter, that letter receives net 
inhibition from the features and is rapidly 
driven into an inactive state. 

For simplicity, the features were treated 
as a constant input, which remained on while 
letter and word activations (if any) were 
allowed to take place. At the end of 50 pro­
cessing cycles, which is virtually asymptotic, 
output was sampled. Sampling results in the 
selection of one letter to fill each position; 
the selected letter is assumed to be all the 
subject takes away from the target display. 
As described previously, the forced choice 
is assumed to be based only on this letter 
identity information. The subject compares 
the letter selected for the appropriate posi­
tion against the forced-choice alternatives. 
If the letter selected is one of the alterna­
tives, then that alternative is selected. If it 
is not one of the alternatives, then one of the 
two alternatives is simply picked at random. 

The simulation produced a 10% advantage 
for letters in words over letters embedded in 
number signs. Probability-correct forced 
choice for letters embedded in words was 
78% correct, whereas for letters in number 
signs, performance was 68% correct. 

The simulated results for the no-mask 
condition clearly show a smaller word ad­
vantage than for the patterned-mask case. 
However, the model produces a larger word 
advantage, which is observed in the experi­
ment (Table 2). As Johnston (1978) has 
pointed out, there are a number of reasons 
why an account such as the one we have 
offered would overestimate the size of the 
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word advantage. First, subjects may occa­
sionally be able to retain an impression of 
the actual visual information they have been 
able to extract. On such occasions, feedback 
from the word level will be of no further 
benefit. Second, even if subjects only retain 
a letter identity code, they may tend to 
choose the forced-choice alternative that is 
most similar to the letter encoded-instead 
of simply guessing-when the letter encoded 
is not one of the two choices. This would 
tend to result in a greater probability of cor­
rect choices and less of a chance for feedback 
to increase accuracy of performance. It is 
hard to know exactly how much these factors 
should be expected to reduce the size of the 
word advantage under these conditions, but 
they would certainly bring it more closely 
in line with the results. 

Perception of Letters in Regular 
Nonwords 

One of the most important findings in the 
literature on word perception is that an item 
need not be a word in order to produce fa­
cilitation with respect to unrelated letter or 
single letter stimuli. The advantage for pseu­
dowords over unrelated letters has been ob­
tained in a very large number of studies 
(Aderman & Smith, 1971; Baron & Thur­
ston, 1973; Carr et al., 1978; McClelland, 
1976; Spoehr & Smith, 1975). The pseu­
doword advantage over single letters has 
been obtained in three studies ( Carr et al., 
1978; Massaro & Klitzke, 1979; McClelland 
& Johnston, 1977). 

Our model produces the facilitation for 
pseudowords by allowing them to activate 
nodes for words that share more than one 
letter in common with the display. When 
they occur, these activations produce feed­
back which strengthens the letters that gave 
rise to them just as in the case of words. 
These activations occur in the model if the 
strength of letter-to-word inhibition is rea­
sonably small compared to the strength of 
letter-to-word excitation. 

To see how this takes place in detail, con­
sider a brief presentation of the pseudoword 
MAVE followed by a patterned mask. (The 
pseudoword is one used by Glushko, 1979, 
in developing the idea that partial activa-
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Figure 9. Activation at the word level upon presentation 
of the nonword MAVE. 

tions of words are combined to derive pro­
nunciations of pseudowords.) As illustrated 
in Figure 9, presentation of MAVE results 
in the initial activation of 16 different words. 
Most of these words, like have and gave, 
share three letters with MAVE. By and 
large, these words steadily gain in strength 
while the target is on and produce feedback 
to the letter level, sustaining the letters that 
supported them. 

Some of the words are weakly activated 
for a brief period of time before they fall 
back below zero. These typically are words 
like more and many, which share only two 
letters with the target but are very high in 
frequency, so they need little excitation be­
fore they exceed threshold. But soon after 
they exceed threshold, the total activation 
at the word level becomes strong enough to 
overcome the weak excitatory input, causing 
them to drop down just after they begin to 
rise. Less frequent words sharing two letters 
with the word displayed have a worse fate 
still. Since they start out initially at a lower 
value, they generally fail to receive enough 
excitation to reach threshold. Thus, when 
there are several words that have three let­
ters in common with the target, words that 
share only two letters with the target tend 
to exert little or no influence. In general then, 
with pronounceable pseudoword stimuli, the 
amount of feedback-and hence the amount 
of facilitation-depends primarily on the 
activation of nodes for words that share three 
letters with a displayed pseudoword. It is the 
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nodes for these words that primarily interact 
with the activations generated by the pre­
sentation of the actual target display. In 
what follows we will call the words that have 
three letters in common with the target letter 
string the neighbors of that string. 

The amount of feedback a particular letter 
in a nonword receives depends, in the model, 
on two primary factors and two secondary 
factors. The two primary factors are the 
number of words in the neighborhood that 
contain the target letter and the number of 
words that do not. In the case of the M in 
MAVE, for example, there are seven words 
in the neighborhood of MAVE that begin 
with M, so the m node gets excitatory feed­
back from all of these. These words are 
called the "friends" of the m node in this 
case. Because of competition at the word 
level, the amount of activation that these 
words receive depends on the total number 
of words that have three letters in common 
with the target. Those that share three let­
ters with the target but are inconsistent with 
the m node (e.g., have) produce inhibition 
that tends to limit the activation of the 
friends of the m node, and can thus be con­
sidered its "enemies." These words also pro­
duce feedback that tends to activate letters 
that were not actually presented. For ex­
ample, activation from have produces excit­
atory input to the h node, thereby producing 
some competition with the m node. These 
activations, however, are usually not terribly 
strong. No one word gets very active, and 
so letters not in the actual display tend to 
get fairly weak excitatory feedback. This 
weak excitation is usually insufficient to 
overcome the bottom-up inhibition acting 
on nonpresented letters. Thus, in most cases, 
the harm done by top-down activation of 
letters that were not shown is minimal. 

A part of the effect we have been describ­
ing is illustrated in Figure 10. Here, we com­
pare the activations of the nodes for the. let­
ters in MAVE. Without feedback, the four 
curves would be identical to the one single­
letter curve included for comparison. So al­
though there is facilitation for all four let­
ters, there are definitely differences in the 
amount, depending on the number of friends 
and enemies of each letter. Note that within 
a given pseudoword, the total number of 
friends and enemies (i.e., the total number 
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Figure JO. Activation functions for the letters a and v 
on presentation of MAVE. (Activation function fore is 
indistinguishable from function for a, and that for m is 
similar to that for v. The activation function for a single 
letter (s I), or a letter in an unrelated context is included 
for comparison.) 

of words with three letters in common) is the 
same for all the letters. 

There are two other factors that affect the 
extent to which a particular word will be­
come active at the word level when a par­
ticular pseudoword is shown. Although the 
effects of these factors are only weakly re­
flected in the activations at the letter level, 
they are nevertheless interesting to note, 
since they indicate some synergistic effects 
that emerge from the interplay of simple 
excitatory and inhibitory influences in the 
neighborhood. These are the rich-get-richer 
effect and the gang effect. The rich-get­
richer effect is illustrated in Figure 11, 
which compares the activation curves for the 
nodes for have, gave, and save under pre­
sentation of MAVE. The words differ in fre­
quency, which gives the words slight differ­
ences in baseline activation. What is 
interesting is that the difference gets mag­
nified; so that at the point of peak activation, 
there is a much larger difference. The reason 
for the amplification can be seen by consid­
ering a system containing only two nodes, 
a and b, starting at different initial positive 
activation levels, a and b at time t. Let us 
suppose that a is stronger than b at t. Then 
at t + 1, a will exert more of an inhibitory 
influence on b, since inhibition of a given 
node is determined by the sum of the acti­
vations of all nodes other than itself. This 
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the "rich get richer" effect 
0. 

0.1 have 
C 
0 ..... 

0.1 ..., 
0 
> ..... ..., 0. 
0 
0 

0. 

-{I. 

TIME 

Figure 11. The rich-get-richer effect. (Activation func­
tions for the nodes for have, gave, and save under pre­
sentation of MAVE.) 

advantage for the initially more active nodes 
is compounded further in the case of the 
effect of word frequency by the fact that 
more frequent words creep above threshold 
first, thereby exerting an inhibitory effect on 
the lower frequency words when the latter 
are still too weak to fight back at all. 

Even more interesting is the gang effect, 
which depends on the coordinated action of 
a related set of word nodes. This effect is 
depicted in Figure 12. Here, the activation 
curves for the move, male, and save nodes 
are compared. In the language, move and 
make are of approximately equal frequency, 
so their activations start out at about the 
same level. But they soon pull apart. Simi­
larly, save starts out below move but soon 
reaches a higher activation. The reason for 
these effects is that male and save are both 
members of gangs with several members, 
whereas move is not. Consider first the dif­
ference between male and move. The reason 
for the difference is that there are several 
words that share the same three letters with 
MAVE as male does. In the list of words 
used in our simulations, there are six. These 
words all work together to reinforce the m, 
and a, and the e nodes, thereby producing 
much stronger reinforcement for themselves. 
Thus, these words make up a gang called the 
ma_e gang. In this example, there is also a 
_ave gang consisting of 6 other words, of 
which save is one. All of these work together 
to reinforce the a, v, and e. Thus, the a and 
e are reinforced by two gangs, whereas the 

letters v and m are reinforced. by only one 
each. Now consider the word move. This 
word is a loner; there are no other words in 
its gang, the m_ve gang. Although two of 
the letters in move receive support from one 
gang each, and one receives support from 
both other gangs, the letters of move are less 
strongly enhanced by feedback than the let­
ters of the members of the other two gangs. 
Since continued activation of one word in 
the face of the competition generated by all 
of the other partially activated words de­
pends on the activations of the component 
letter nodes, the words in the other two gangs 
eventually gain the upper hand. and drive 
move back below the activation threshold. 

As our study of the MAVE example il­
lustrates, the pattern of activation produced 
by a particular pseudoword is complex and 
idiosyncratic. In addition to the basic friends 
and enemies effects, there are also the rich­
get-richer and the gang effects. These effects 
are primarily reflected in the pattern of ac­
tivation at the word level, but they also exert 
subtle influences on the activations at the 
letter level. In general though, the main re­
sult is that when the letter-to-word inhibition 
is low, all four letters in the pseudoword re­
ceive some feedback reinforcement. The re­
sult, of course, is greater accuracy of re­
porting letters in pseudowords compared to 
single letters. 

Comparison of performance on words and 
pseudowords. Let us now consider the fact 
that the word advantage over pseudowords 
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Figure 11. The gang effect. (Activation functions for 
move, male, and save under presentation of MAVE.) 
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Table 3 
Actual and Simulated Results of the 
McClelland & Johnston ( 1977) Experiments 
(Proportion of Correct Forced Choice) 

Target type 

Single 
Result class Word Pseudoword letter 

Actual data 
High BF .81 .79 .67 
Low BF .78 .77 .64 
Average .80 .78 .66 

Simulation 
High BF .81 .79 .67 
Low BF .79 .77 .67 
Average .80 .78 .67 

Note. BF = bigram frequency. 

is generally rather small in exp~rim~~ts 
where the subject knows that the stlmuh in­

clude pseudowords. Some fairly represen­
tative results, from the study of McClelland 
and Johnston ( 1977), a!e illustrated in Table 
3. The visual conditions of the study were 
the same as those used in the patterned-mask 
condition in Johnston and McClelland 
(1973). Trials were blocked, so subjects 
could adopt the optimum strategy for each 
type of material. The slight word-p~eud~­
word difference, though representative, 1s 
not actually statistically reliable in this 
study. 
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Figure 13. Activity at the word level_ up_o~ presentation 
of CAVE, with weak letter-to-word mh1b1t10n. 
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Figure 14. Activation functions for the letter a, under 
presentation of CAVE and M AVE and alone. 

Words differ from pseudowords in that a 
word strongly activates one node at the word 
level whereas a pseudoword does not. While 
we ~ould tend to think of this as increasing 
the amount of feedback for words as opposed 
to pseudowords, there is the word-level in­
hibition that must be taken into account. 
This inhibition tends to equalize the total 
amount of activation at the word level be­
tween words and pseudowords. With words, 
the word shown tends to dominate the pat­
tern of activity, thereby keeping all the 
words that have three letters in common with 
it from achieving the activation level they 
would reach in the absence of a node acti­
vated by all four letters. This situation is 
illustrated for the word CAVE in Figure 13. 
The result is that the sum of the activations 
of all the active units at the word level is not 
much different between the two cases. Thus, 
CAVE produces only slightly more facili­
tation for its constituent letters than MAVE, 
as illustrated in Figure 14. 

In addition to the leveling effect of com­
petition at the word level, it turned out that 
in our model, one of the common design fea­
tures of studies comparing performance on 
words and pseudowords would operate to 
keep performance relatively good on pseu­
dowords. In general, the stimulus materials 
used in most of these studies are designed 
by beginning with a list of pairs of words 
that differ by one letter (e.g., PEEL-PEEP). 
From each pair of words, a pair of n~n­
words is generated, differing from the ong-
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inal word pair by just one of the context 
letters and thereby keeping the actual target 
letters-and as much of the context as pos­
sible-the same between word and pseudo­
word items (e.g., TEEL-TEEP). A previ­
ously unnoticed side effect of this matching 
procedure is that it ensures that the critical 
letter in each pseudoword has at least one 
friend, namely the word from the matching 
pair that differs from it by one context letter. 
In fact, most of the critical letters in the 
pseudowords used by McClelland and John­
ston ( 1977) tended to have relatively few 
enemies, compared to the number of friends. 
In general, a particular letter should be ex­
pected to have three times as many friends 
as enemies. In the McClelland and Johnston 
stimuli, the great majority of the stimuli had 
much larger differentials. Indeed, more than 
half of the critical letters had no enemies 
at all. 

The puzzling absence of cluster frequency 
effects. In the account we have just de­
scribed, facilitation of performance on let­
ters in pseudowords was explained by the 
fact that pseudowords tend to activate a 
large number of words, and these words tend 
to work together to reinforce the activations 
of letters. This account might seem to sug­
gest that pseudowords that have common 
letter clusters, and therefore have several 
letters in common with many words, would 
tend to produce the greatest facilitation. 
However, this factor has been manipulated 
in a number of studies, and little has been 
found in the way of an effect. The Mc­
Clelland and Johnston (1977) study is one 
case in point. As Table 3 illustrates, there 
is only a slight tendency for superior per­
formance on high cluster frequency words. 
This slight tendency is also observed in single 
letter control stimuli, suggesting that the 
difference may be due to differences in per­
ceptibility of the target letters in the differ­
ent positions, rather than cluster frequency 
per se. In any case, the effect is very small. 
Other studies have likewise failed to find any 
effect of cluster frequency (Spoehr & Smith, 
1975; Manelis, 1974). The lack of an effect 
is most striking in the McClelland and John­
ston study, since the high and low cluster 
frequency items differed widely in cluster 
frequency as measured in a number of ways. 

In our model, the lack of a cluster fre­
quency effect is due to the effect of mutual 
inhibition at the word level. As we have seen, 
this mutual inhibition tends to keep the total 
activity at the word level roughly constant 
over a variety of different input patterns, 
thereby greatly reducing the advantage for 
high cluster frequency items. Items contain­
ing infrequent clusters tend to activate few 
words, but there is less competition at the 
word level, so that the words that do become 
active reach higher activation levels. 

The situation is illustrated for the non­
words TEEL and HOET in Figure 15. Al­
though TEEL activates many more words, 
the total activation is not much different in 
the two cases. 

The total activation is not, of course, the 
whole story. The ratio of friends to enemies 
is also important. And it turns out that this 
ratio is working against the high cluster 
items more than the low cluster items. In 
McClelland and Johnston's stimuli, only one 
of the low cluster frequency nonword pairs 
had critical letters with any enemies at all! 
For 23 out of 24 pairs, there was at least one 
friend (by virtue of the method of stimulus 
construction) and no enemies. In contrast, 
for the high cluster frequency pairs, there 
was a wide range, with some items having 
several more enemies than friends. 

To simulate the McClelland and Johnston 
( 1977) results, we had to select a subset of 
their stimuli, since some of the words they 
used were not in our word list. The stimuli 
had been constructed in sets containing a 
word pair, a pseudoword pair, and a single 
letter pair that differed by the same letters 
in the same position (e.g., PEEL-PEEP 
TEEL-TEEP; ______L ___p), We simply se­
lected all those sets in which both words in 
the pair appeared in our list. This resulted 
in a sample of l O high cluster frequency sets 
and l O low cluster frequency sets. The single 
letter stimuli derived from the high and low 
cluster frequency pairs were also run through 
the simulation. Both members of each pair 
were tested. 

Since the stimuli were presented in the 
actual experiment blocked by material type, 
we separately selected an optimal time for 
readout for words, pseudowords, and single 
letters. Readout time was the same for high 
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and low cluster frequency items of the same 
type, since these were presented in a mixed 
list in the actual experiment. As in the sim­
ulation of the Johnston and McClelland 
(1973) results, the display was presented for 
a duration of 15 cycles. 

data. The magnitude of the pseudoword ad­
vantage over single letters is just slightly 
smaller than the word advantage, and the 
effect of cluster frequency is very slight. 

We have yet to consider how the model 
deals with unrelated letter strings. This de­
pends a little on the exact characteristics of 
the strings. First let us consider truly ran-

The simulation results, shown in Table 3, 
reveal the same general pattern as the actual 
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Figure 15. The number of words activated (top) and the total activation at the word level (bottom) upon 
presentation of the nonwords TEEL and HOET. 
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domly generated consonant strings. Such 
items typically produce some activation at 
the word level in our model, since they tend 
to share two letters with several words ( one 
letter out of four is insufficient to activate 
a word, since three inhibitory inputs out­
weight one excitatory input). These strings 
rarely have three letters in common with any 
one word. Thus, they only tend to activate 
a few words very weakly, and because of the 
weakness of the bottom-up excitation, com­
petition among partially activated words 
keep any one word from getting very active. 
So, little benefit results. When we ran our 
simulation on randomly generated conso­
nant strings, there was only a 1 % advantage 
over single letters. 

Some items which have been used as un­
pronounceable nonwords or unrelated letter 
strings do produce a weak facilitation. We 
ran the nonwords used by McClelland and 
Johnston (1977) in their Experiment 2. 
These items contain a large number of vow­
els in positions that vowels typically occupy 
in words, and they therefore activate more 
words than, for example, random strings of 
consonants. The simulation was run under 
the same conditions as the one reported 
above for McClelland and Johnston's Ex­
periment 1. The simulation produced a slight 
advantage for letters in these nonwords, 
compared to single letters, as did the exper­
iment. In both the simulation and the actual 
experiment, forced-choice performance was 
4% more accurate for letters in these unre­
lated letter strings than in single letter 
stimuli. 

On the basis of this characteristic of our 
model, the results of one experiment on the 
importance of vowels in reading may be rein­
terpreted. Spoehr and Smith (1975) found 
that subjects were more accurate when re­
porting letters in unpronounceable nonwords 
that contained vowels than in those com­
posed of all consonants. They interpreted the 
results as supporting the view that subjects 
parse letter strings into "vocalic center 
groups." However, an alternative possible 
account is that the strings containing vowels 
had more letters in common with actual 
words than the all consonant strings. 

In summary, the model provides a good 
account of the perceptual advantage for let-

ters in pronounceable nonwords, and for the 
lack of such an advantage in unrelated letter 
strings. In addition, it accounts for the small 
difference between performance on words 
and pseudowords and for the absence of any 
really noticeable cluster frequency effect in 
the McClelland and Johnston ( 1977) exper­
iment. 

The Role of Lexical Constraints 

The Johnston (1978) experiment. Sev­
eral models that have been proposed to ac­
count for the word advantage rely on the 
idea that the context letters in a word fa­
cilitate performance by constraining the set 
of possible letters that might have been pre­
sented in the critical letter position. Accord­
ing to models of this class, contexts that 
strongly constrain what the target letter 
should be result in greater accuracy of per­
ception than more weakly constraining con­
texts. For example, the context Jl/P should 
facilitate the perception of an initial S more 
than the context JNK. The reason is that 
JIIP is more strongly constraining, since 
only three letters (S, C, and W) fit in the 
context to make a word, compared to JNK, 
where nine letters (D, F, K, L, M, P, R, S, 
and W) fit in the context to make a word. 
In a test of such models, Johnston (1978) 
compared accuracy of perception of letters 
occurring in high- and low-constraint con­
texts. The same target letters were tested in 
the same positions in both cases. For ex­
ample, the letters S and W were tested in 
the high-constraint JIIP context and the 
low-constraint JNK context. Using bright­
target/patterned-mask conditions, Johnston 
found no difference in accuracy of percep­
tion between letters in the high- and low­
constraint contexts. The results of this ex­
periment are shown in Table 4. Johnston 
measured letter perception in two ways. He 
not only asked the subjects to decide which 
of two letters had been presented ( the forced­
choice measure), but he also asked subjects 
to report the whole word and recorded how 
often they got the critical letter correct. No 
significant difference was observed in either 
case. In the forced choice there was a slight 
difference favoring low-constraint items, 
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Table 4 
Actual and Simulated Results (Probability 
Correct) From Johnston (1978) Experiments 

Constraint 

Result class High Low 

Actual data 
Forced choice .77 .79 
Free report .54 .54 

Simulation 
Forced choice .77 .76 
Free report .56 .54 

but in the free report there was no difference 
at all. 

Although our model does use contextual 
constraints (as they are embodied in specific 
lexical items), it turns out that it does not 
predict that highly constraining contexts 
will facilitate perception of letters much 
more than weakly constraining contexts 
under bright-target/patterned-mask condi­
tions. Under such conditions, the role of the 
word level is not to help the subject select 
among alternatives left open by an incom­
plete feature analysis process, as most con­
straint-based models have assumed, but 
rather to help strengthen the activation of 
the nodes for the letters presented. Contex­
tual constraints, at least as manipulated by 
Johnston, do not have much effect on the 
magnitude of this strengthening effect. 

In detail, what happens in the model when 
a word is shown is that the presentation re­
sults in weak activation of the words that 
share three letters with the target. Some of 
these words are friends of the critical letter 
in that they contain the actual critical letter 
shown, as well as two of the letters from the 
context (e.g., shop is a friend of the initial 
S in SHIP). Some of the words, however, 
are enemies of the critical letter in that they 
contain the three context letters of the word 
but a different letter in the critical letter 
position (e.g., chip and whip are enemies of 
the S in SHIP). From our point of view, 
Johnston's (1978) constraint manipulation 
is essentially a manipulation of the number 
of enemies the critical letter has in the given 
context. Johnston's high- and low-constraint 
stimuli have equal numbers of friends, on 
the average, but (by design) the high-con-

straint items have fewer enemies, as shown 
in Table 5. 

In the simulation, the friends and enemies 
of the target word receive some activation. 
The greater number of enemies in the low­
constraint condition is responsible for the 
small effect of constraint that the model pro­
duces. What happens is that the enemies of 
the critical letter tend to keep nodes for the 
presented word and for the friends of the 
critical letter from being quite as strongly 
activated as they would otherwise be. The 
effect is quite small for two reasons. First, 
the node for the word presented receives four 
excitatory inputs from the letter level, and 
all other words can only receive at most three 
excitatory inputs and at least one inhibitory 
input. As we saw in the case of the word 
CAVE, the node for the correct word dom­
inates the activations at the word level and 
is predominantly responsible for any feed­
back to the letter level. Second, while the 
high-constraint items have fewer enemies, 
by more than a two-to-one margin, both 
high- and low-constraint items have, on the 
average, more friends than enemies. The 
friends of the target letter work with the 
actual word shown to keep the activations 
of the enemies in check, thereby reducing 
the extent of their inhibitory effect still fur­
ther. The ratio of the number of friends over 
the total number of neighbors is not very 
different in the two conditions, except in the 
first serial position. 

This discussion may give the impression 
that contextual constraint is not an impor­
tant variable in our model. In fact, it is quite 
powerful. But its effects are obscured in the 
Johnston (1978) experiment because of the 
strong dominance of the target word when 
all the features are extracted and the fact 
that we are concerned with the likelihood of 
perceiving a particular letter rather than 
performance in identifying correctly what 
whole word was shown. We will now con­
sider an experiment in which contextual con­
straints played a strong role, because the 
characteristics just mentioned were absent. 

The Broadbent and Gregory ( 1968) ex­
periment. Up to now we have found no 
evidence that either bigram frequency or 
lexical constraints have any effect on 
performance. However, in experiments using 
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Table 5 

401 

Friends and Enemies of the Critical Letters in the Stimuli Used by Johnston (1978) 

High constraint 
Critical letter 

position Friends Enemies 

I 3.33 2.22 
2 9.17 1.00 
3 6.30 1.70 
4 4.96 1.67 

Average 5.93 1.65 

the traditional whole report method, these 
variables have been shown to have substan­
tial effects. Various studies have shown that 
recognition thresholds are lower, or recog­
nition accuracy at threshold higher, when 
relatively unusual words are used (Bou­
whuis, 1979; Havens & Foote, 1963; New­
bigging, 1961 ). Such items tend to be low 
in bigram frequency and at the same time 
high in lexical constraint. 

In one experiment, Broadbent and Greg­
ory ( 1968) investigated the role of bigram 
frequency at two different levels of word fre­
quency and found an interesting interaction. 
We now consider how our model can account 
for their results. To begin, it is important to 
note that the visual conditions of their ex­
periment were quite different from those of 
McClelland and Johnston ( 1977), in which 
the data and our model failed to show a bi­
gram frequency effect, and of Johnston 
(1978), in which the data and the model 
showed little or no constraint effect. The 
conditions were like the dim-target/blank­
mask conditions discussed above, in that the 
target was shown briefly against an illumi­
nated background, without being followed 
by any kind of mask. The dependent measure 
was the probability of correctly reporting the 
whole word. The results are indicated in 
Table 6. A slight advantage for high bigram 
frequency items over low bigram frequency 
was obtained for frequent words, although 
it was not consistent over different subsets 
of items tested. The main finding was that 
words of low bigram frequency had an ad­
vantage among infrequent words. For these 
stimuli, higher bigram frequency actually 
resulted in a lower percent correct. 

Unfortunately, Broadbent and Gregory 
used five-letter words, so we were unable to 

Low constraint 

Ratio Friends Enemies Ratio 

.60 3.61 6.44 .36 

.90 6.63 2.88 .70 

.79 7.75 4.30 .64 

.75 6.67 3.50 .66 
6.17 4.27 

run a simulation on their actual stimuli. 
However, we were able to select a subset of 
the stimuli used in the McClelland and John­
ston ( 1977) experiment that fit the require­
ments of the Broadbent and Gregory design. 
We therefore presented these stimuli to our 
model, under the presentation parameters 
used in simulating the blank-mask condition 
of the Johnston and McClelland (1973) ex­
periment above. The only difference was that 
the output was taken, not from the letter 
level, as in all of our other simulations, but 
directly from the word level. The results of 
the simulation, shown in Table 6, replicate 
the obtained pattern very nicely. The sim­
ulation produced a large advantage for the 
low bigram items, among the infrequent 
words, and produced a slight advantage for 
high bigram items among the frequent words. 

In our model, low-frequency words of high 
bigram frequency are most poorly recog­
nized, because these are the words that have 
the largest number of neighbors. Under con­
ditions of incomplete feature extraction, 
which we expect to prevail under these visual 

Table 6 
Actual and Simulated Results of the Broadbent 
and Gregory ( I 968) Experiment ( Proportion of 
Correct Whole Report) 

Word frequency 

Result class High Low 

Actual data 
High BF .64 .43 
Low BF .64 .58 

Simulation 
High BF .41 .21 
Low BF .39 .37 

Note. BF= bigram frequency. 
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conditions, the more neighbors a word has 
the more likely it is to be confused with some 
other word. This becomes particularly im­
portant for lower frequency words. As we 
have seen, if both a low-frequency word and 
a high-frequency word are equally compat­
ible with the detected portion of the input, 
the higher frequency word will tend to dom­
inate. When incomplete feature information 
is extracted, the relative activation of the 
target and the neighbors is much lower than 
when all the features have been seen. Indeed, 
some neighbors may turn out to be just as 
compatible with the features extracted as the 
target itself. Under these circumstances, the 
word of the highest frequency will tend to 
gain the upper hand. The probability of cor­
rectly reporting a low-frequency word will 
therefore be much more strongly influenced 
by the presence of a high-frequency neighbor 
compatible with the input than the other way 
around. 

But why does the model actually produce 
a slight reversal with high-frequency words? 
Even here, it would seem that the presence 
of numerous neighbors would tend to hurt 
instead of facilitate performance. However, 
we have forgotten the fact that the activation 
of neighbors can be beneficial as well as 
harmful. The active neighbors produce feed­
back that strengthens most or all of the let­
ters, and these in turn increase the activation 
of the node for the word shown. As it hap­
pens, there turns out to be a delicate balance 
for high-frequency words between the neg­
ative and positive effects of neighbors, which 
only slightly favors the words with more 
neighbors. Indeed, the effect only holds for 
some of these items. We have not yet had 
the opportunity to explore all the factors that 
determine whether the effect of neighbors 
in individual cases will on balance be positive 
or negative. 

Different effects in different experi­
ments. This discussion of the Broadbent 
and Gregory (I 968) experiment indicates 
once again that our model is something of 
a chameleon. The model produces no effect 
of constraint or bigram frequency under the 
visual conditions and testing procedures used 
in the Johnston (1978) and McClelland and 
Johnston ( 1977) experiments but does pro­
duce such effects under the conditions of the 

Broadbent and Gregory ( 1968) experiment. 
This flexibility of the model, of course, is 
fully required by the data. While there are 
other models of word perception that can 
account for one or the other type of result, 
to our knowledge the model presented here 
is the only scheme that has been worked out 
to account for both. 

Discussion 

The interactive activation model does a 
good job of accounting for the results in the 
literature on the perception of letters in 
words and nonwords. The model provides a 
unified explanation of the results of a variety 
of experiments and provides a framework in 
which the effects of manipulations of the 
visual display characteristics used may be 
analyzed. In addition, as we shall see in Part 
2 (Rumelhart & McClelland, in press), the 
model readily accounts for a variety of ad­
ditional phenomena. Moreover, as we shall 
also show, it can be extended beyond its cur­
rent domain of applicability with substantial 
success. In Part 2 we will report a number 
of experiments demonstrating what we call 
"context enhancement effects" and show 
how the model can explain the major find­
ings in the experiments. 

One issue that deserves some considera­
tion is the robustness of the model. To what 
extent do the simulations depend upon par­
ticular parameter values? What are the ef­
fects of changes of the parameter values? 
These are extremely complex questions, and 
we do not have complete answers. However, 
we have made some observations. First, the 
basic Reicher (1969) effect can be obtained 
under a very wide range of different param­
eters, though of course its exact size will 
depend on the ensemble of parameter values. 
However, one thing that seems to be impor­
tant is the overpowering effect of one incom­
patible feature in suppressing activations at 
the letter level. Without this strong bottom­
up inhibition, the mask would not effectively 
drive out the activations previously estab­
lished by the stimulus. Second, performance 
on pronounceable nonwords depends on the 
relative strength of letter-word excitation 
compared to inhibition and on the strength 
of the competition among word units. Pa-
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rameter values can be found which produce 
no advantage for any multiletter strings ex­
cept words, whereas other values can be 
found that produce large advantages for 
words, pseudowords, and even many non­
word strings. The effects (or rather the lack 
of effects) of letter-cluster frequency and 
constraints likewise depend on these param­
eters. 

It thus appears that relatively strong fea­
ture-letter inhibition is necessary, but at the 
same time, relatively weak letter-word in­
hibition is necessary. This discrepancy is a 
bit puzzling, since we would have thought 
that the same general principles of operation 
would have applied to both the letter and the 
word levels. A possible way to resolve the 
discrepancy might be to introduce a more 
sophisticated account of the way masking 
works. It is quite possible that new inputs 
act as position-specific "clear signals," dis­
rupting activations created by previous pat­
terns in corresponding locations. Some pos­
sible physiological mechanisms that would 
produce such effects at lower processing lev­
els have been described by Weisstein, Ozog, 
and Szoc (1975) and by Breitmeyer and 
Ganz (197 6 ), among others. If we used such 
a mechanism to account for the basic effect 
of masking, it might well be possible to lower 
the feature-letter inhibition considerably. 
Lowering feature-letter inhibition would 
then necessitate strong letter-letter inhibi­
tion, so that letters that exactly match the 
input would be able to dominate those with 
only partial matches. With these changes the 
letter and word levels would indeed operate 
by the same principles. 

Perhaps it is a bit premature to discuss 
such issues as robustness, since there are a 
number of problems that we have not yet 
resolved. First, we have ignored the fact that 
there is a high degree of positional uncer­
tainty in reports of letters-particularly let­
ters in unrelated strings, but occasionally 
also in reports of letters in words and pseu­
dowords (Estes, 1975; McClelland, 1976; 
McClelland & Johnston, 1977). Another 
thing that we have not considered very fully 
is the serial position curve. In general, it 
appears that performance is more accurate 
on the end letters in multiletter strings, par­
ticularly the first letter. In Part 2 we consider 

ways of extending the model to account for 
both of these aspects of perceptual perfor­
mance. 

Third, there are some effects of set on 
word perception that we have not considered. 
Johnston and McClelland (1974) found that 
perception of letters in words was actually 
hurt if subjects focused their attention on a 
single letter position in the word (see also 
Holender, 1979, and Johnston, 1974). In 
addition, Aderman and Smith (1971) found 
that the advantage for pseudowords over 
unrelated letters only occurs if the subject 
expects that pseudowords will be shown; and 
more recently, Carr et al. (1978) have rep­
licated this finding, while at the same time 
showing that it is apparently not necessary 
to be prepared for presentations of actual 
words. Part 2 considers how our model is 
compatible with this effect also. We will also 
consider how our model might be extended 
to account for some recent findings demon­
strating effects of letter and word masking 
on perception of letters in words and other 
contexts. 

In all but one of the experiments we have 
simulated, the primary (if not the only) data 
for the experiments were obtained from 
forced choices between pairs of letters, or 
strings differing by a single letter. In these 
cases, it seemed to us most natural to rely 
on the output of the letter level as the basis 
for responding. However, it may well be that 
subjects often base their responses on the 
output of the word level. Indeed, we have 
assumed that they do in experiments like the 
Broadbent and Gregory (1968) study, in 
which subjects were told to report what word 
they thought they had seen. This may also 
have happened in the McClelland and John­
ston (1977) and Johnston (1978) studies, in 
which subjects were instructed to report all 
four letters before the forced choice on some 
trials. Indeed, both studies found that the 
proeability of reporting all four letters cor­
rectly for letters in words was greater than 
we would expect given independent process­
ing of each letter position. It seems natural 
to account for these completely correct re­
ports by assuming that they often occurred 
on occasions where the subject encoded the 

-item as a word. Even in experiments where 
only a forced choice is obtained, on many 
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occasions subjects may still come away with 
a word, rather than a sequence of letters. 

In the early phases of the development of 
our model, we explicitly included the pos­
sibility of output from the word level as well 
as the letter level. We assumed that the sub­
ject would either encode a word, with some 
probability dependent on the activations at 
the word level or, failing that, would encode 
some letter for each letter position dependent 
on the activations at the letter level. How­
ever, we found that simply relying on the 
letter level permitted us to account equally 
well for the results. In essence, the reason 
is that the word-level information is incor­
porated into the activations at the letter level 
because of the feedback, so that the word 
level is largely redundant. In addition, of 
course, readout from the letter level is nec­
essary to the model's account of performance 
with nonwords. Since it is adequate to ac­
count for all of the forced-choice data, and 
since it is difficult to know exactly how much 
of the details of free-report data should be 
attributed to perceptual processes and how 
much to such things as possible biases in the 
readout processes and so forth, we have stuck 
for the present with readout from the letter 
level. 

Another decision that we adopted in order 
to keep the model within bounds was to ex­
clude the possibility of processing interac­
tions between the visual and phonological 
systems. However, in the model as sketched 
at the outset (Figure 1 ), activations at the 
letter level interacted with a phonological 
level as well as the word level. Perhaps the 
most interesting feature of our model is its 
ability to account for performance on letters 
in pronounceable nonwords without assum­
ing any such interactions. We will also see 
in Part 2 (Rumelhart & McClelland, in 
press) that certain carefully selected unpro­
nounceable consonant strings produce quite 
large contextual facilitation effects, com­
pared to other sequences of consonants, 
which supports our basic position that pro­
nounceability per se is not an important fea­
ture of the perceptual facilitation effects we 
have accounted for. 

Another simplification we have adopted 
in Part I has been to consider only cases in 
which individual letters or strings of letters 
were presented in the absence of a linguistic 

context. In Part 2 we will consider the effects 
of introducing contextual inputs to the word 
level, and we will explore how the model 
might work in processing spoken words in 
context as well. 
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Appendix 
Computer Simulation of the Model 

The computer program for simulating the in­
teractive activation model was written in the C 
programming language to run on a Digital PDP 

I I/ 45 computer under the UNIX (Trade Mark 
of Bell Laboratories) operating system. There is 
now a second version, also in C, which runs under 
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UNIX on a VAX 11 /780. When no other jobs 
are running on the VAX, a simulation of a single 
experimental trial takes approximately 15-30 sec. 

Data Structures 

The simulation relies on several arrays for each 
of the processing levels in the model. The input 
is held in an array that contains slots for each of 
the line segments in the Rumelhart-Siple font in 
each position. Segments can be present or absent, 
or their status can be indeterminate (as when the 
input is made deliberately incomplete). There is 
another array that holds the information the 
model has detected about the display. Each ele­
ment of this array represents a detector for the 
presence or absence of a feature. When the cor­
responding feature is detected, the detector's value 
is set to 1 (remember that both absence and pres­
ence must be detected). 

At the letter level, one array (the activation 
array) stores the current activation of each node. 
A second array (the excitatory buffer) is used to 
sum all of the excitatory influences reaching each 
node on a given tick of the clock, and a third array 
(the inhibitory buffer) is used to sum all of the 
inhibitory influences reaching each node. In ad­
dition there is an output array, containing the 
current output strength of each letter level node. 
At the word level, there is an activation array for 
the current activation of each node, as well as an 
excitatory buffer and an inhibitory buffer. 

Knowledge of Letters and Words 

The links among the nodes in the model are 
stored in a set of tables. There is a table in the 
program that lists which features are present in 
each letter and which are absent. Another table 
contains the spellings of each of the 1, 1 79 words 
known to the program. 

Input 

Simulated visual input is entered from a com­
puter terminal or from a text file. Several suc­
cessive displays within a single "trial" may be 
specified. Each display is characterized by an on­
set time (tick number from the start of the trial­
see below) and some array of visual information. 
Each lowercase letter stands for the array of fea­
tures making up the corresponding letter. Other 
characters stand for particular mask characters, 
blanks, and so forth. As examples, "_" stands for 
a blank, and "0" stands for the l& mask character. 
Thus the specification: 

0 mav-
12 mave 
24 0000 

instructs the program to present the visual array 

consisting of the letters M, A, and Vin the first, 
second, and third letter positions, respectively, at 
Cycle O; to present the letter E in the fourth po­
sition at Cycle 12; and to present an l8! mask at 
Cycle 24. It is also possible to specify any arbi­
trary feature array to occur in any letter position. 

Processing Occurring During Each Cycle 

During each cycle, the values of all of the nodes 
are updated. The activations of letter and word 
nodes, which were determined on Cycle t - 1, are 
used to determine the activations of these nodes 
on Cycle t. Activations of feature nodes are up­
dated first, so that they begin to influence letter 
nodes right away. 

The first thing the program does on each cycle 
is update the input array to reflect any new 
changes in the display. On cycles when a new 
display is presented, detectors for features in letter 
positions in which there has been a change in the 
input are subject to resetting. A random number 
generator is used to determine whether each new 
feature is detected or not. When the new value 
of a particular feature (present or absent) is de­
tected, the old value is erased. Probability of de­
tection can be set to any probability (in many 
cases it is simply set to 1.0, so that all of the 
features are detected). 

For each letter in each position, the program 
then checks the current activation value (i.e., the 
value computed on the previous cycle) in the ac­
tivation array. If the node is active (i.e., if its 
activation is above threshold), its excitatory and 
inhibitory effects on each node at the word level 
are computed. To determine whether the letter in 
question excites or inhibits a particular word node, 
the program simply examines the spelling of each 
word to see if the letter is in the word in the 
appropriate position. If so, excitation is added to 
the word's excitatory buffer. If not, inhibition is 
added to the word's inhibitory buffer. The mag­
nitudes of these effects are the product of the driv­
ing letter's activation and the appropriate rate 
parameters. Word-to-letter influences are com­
puted in a similar fashion. 

The next step is the computation of the word­
word inhibition and the determination of the new 
word activation values. First, the activations of all 
the active word nodes are summed. The inhibitory 
buffer of each word node is incremented by an 
amount proportional to the summed activation of 
all other word nodes (i.e., by the product of the 
total word level activation minus its own activa­
tion, if it is active, times the word-word inhibition 
rate parameter). This completes the influences 
acting on the word nodes. The value in the inhib­
itory buffer is subtracted from the value in the 
excitatory buffer. The result is then subjected to 
floor and ceiling effects, as described in the article, 
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to determine the net effect of the excitatory and 
inhibitory input. This net effect is then added to 
the current activation of the node, and the decay 
of the current value is subtracted to give a new 
current value, which is stored in the activation 
array. Finally, the excitatory and inhibitory buff­
ers are cleared for new input on the next cycle. 

Next is the computation of the feature-to-letter 
influences. For each feature in each letter position, 
if that feature has been detected, the program 
checks each letter to see if it contains the feature. 
If it does, the excitatory buffer for that letter in 
that position is incremented. If not, the corre­
sponding inhibitory buffer is incremented. After 
this, the letter-letter inhibition is added into the 
inhibitory buffers following a similar procedure 
as was used in computing the word-word inhibi­
tory effects. (Actually, this step is skipped in the 
reported simulations, since the value of letter-let­
ter inhibition has been set to zero.) 

Next is the computation of the new activation 
values at the letter level. These are computed in 
just the same way as the new activation values at 
the word level. Finally, the effect of the current 
activation is added into the letter's output strength, 
and the excitatory and inhibitory buffers are 
cleared for the next cycle. 

The order of some of the preceding steps is ar­
bitrary. What is important is that at the end of 
each cycle, the activations of all the word nodes 
have been updated to reflect letter activations of 
the previous cycle and vice versa. The fact that 
newly detected input influences the letter detec­
tors immediately is not meaningful, since waiting 
until the next cycle would just add a fixed delay 
to all of the activations in the system. 

Output 

To simulate forced-choice performance, the 
program must be told when to read out the results 
of processing at the letter level, what position is 
being tested, and what the two alternatives are. 
In fact the user actually gives the program the 
full target display and the full alternative display 
(e.g., LEAD-LOAD), and the program compares 
them to figure out the critical letter position and 
the two choice alternatives. Various options are 
available for monitoring readout performance of 
the simulation. First, it is possible to have the 
program print out what the result of readout 
would be at each time cycle. Second, the user may 
specify a particular cycle for readout. Third, the 
user may tell the program to figure out the optimal 
time for readout and to print both the time and 
the resulting percent correct performance. This 
option is used in preliminary runs, to determine 

what readout time to use in the final simulation 
runs for each experiment. 

On each cycle for which output is requested, 
the program computes the probability that the 
correct alternative is read out and the probability 
that the incorrect alternative is read out, based 
on their response strengths as described in the 
text. Probability-correct forced choice is then sim­
ply the probability that the correct alternative 
was read out, plus .5 times the probability that 
neither the correct nor the incorrect alternative 
was read out. 

Observation and Manipulation 

It is possible to examine the activation of any 
node at the end of each cycle. A few useful sum­
maries are also available, such as the number of 
active word nodes and the sum of their activations, 
the number of active letter nodes in each position, 
and so on. It is also possible to alter any of the 
parameters of the model between cycles or to 
change a parameter and then start again at Time 
0 in order to compare the response of the model 
under different parameter values. 

Running a Simulation 

When simulating an experiment with a number 
of different trials (i.e., a number of different stim­
ulus items in each experimental condition), the 
information the computer needs about the input 
and the forced-choice alternatives can be specified 
in a file, with one line containing all of the nec­
essary information for each trial of the simulation. 
Typically a few test runs are carried out to choose 
an optimal exposure duration and readout time. 
Then the simulation is run with a single specified 
readout time for each display condition (when 
different display types are mixed within the same 
block of trials in the experiment being simulated, 
a single readout time is used for all display con­
ditions). Note that when the probability of feature 
detection is set to 1.0, the model is completely 
deterministic. That is, it computes readout and 
forced-choice probabilities on the basis of response 
strengths. These are determined completely by the 
knowledge stored in the system (e.g., what the 
system knows about the appearance of the letters 
and the spellings of the words), by the set of fea­
tures extracted, and by the values of the various 
parameters. 

Received March 11, 1981 ■ 

Inge
Rectangle




